UIA: A Global Connectivity Architecture for Personal Mobile Devices

Bryan Ford
Massachusetts Institute of Technology

in collaboration with
Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea, Frans Kaashoek, Robert Morris

http://pdos.csail.mit.edu/uia
Personal devices everywhere

- Internally they are like real computers
- They will be part of the Internet
- They will store data that people want to share
Global connectivity enables information sharing

• Alice and Bob meet

• Alice & Bob later share stuff remotely
Other examples

- Upload picture from camera to mom’s iPhone
- Stream video from ambulance to doctor’s PDA
- Car-to-car local traffic information
The Internet's Evolution

Internet designed for...

- **wired** networks
- **fixed** computers
- **expert** operators

...but now supports:

- **wireless** nets
- **mobile** devices
- **unskilled** users
The Problem

old design assumptions
+
Internet evolution
=
connectivity challenges for personal devices
The Project

Unmanaged Internet Architecture (UIA)

Goal:
Make personal device connectivity “just work” by rethinking basic networking concepts
Architecture Overview

Traditional Layers
- **Transport:** TCP, serialized streams
- **Naming:** DNS, global names
- **Routing:** IP, managed infrastructure

UIA Enhancements
- **Transport:** [SIGCOMM '07] structured streams
- **Naming:** [OSDI '06] personal groups/names
- **Routing:** [OSDI '06] unmanaged overlay
Naming Scenario

Bob & Alice:

1. Meet at conference
2. Re-connect remotely over Internet
3. Meet again off-Internet
Bob & Alice meet, connect [Bonjour] – using local names (e.g., “Alice-PDA”)
Naming Scenario (2)

Wish to re-connect remotely – need different, global names & more setup (e.g., “pda.alice1234.herisp.com”)
Naming Scenario (3)

Meet again off-Internet – global names stop working!
Require different, local names (again)
Key Naming Challenges

Personal device names should be:

1. Convenient
 - short, personally meaningful

2. Consistent
 - usable on any device I own/manage

3. Available
 - works even under disconnect/partition

#3 precludes central name service!
Key Naming Contribution

Personal Group:
distributed federation of personal devices

![Diagram showing Bob's Personal Group connected to a Work PC, Home PC, Laptop, and Camera via the Internet.](image)
What is a Personal Group?

Combination of:

- A **distributed namespace** of devices, users, ...
- An **ad hoc virtual private network** (VPN)
- A **user identity** for social networking

...with **fully decentralized, user-friendly management & operation**
Outline

✓ Introduction

• Personal Group Naming Model
 – from user's perspective \Rightarrow convenient
• Implementing Personal Groups
 – decentralized \Rightarrow consistent, available

• Evaluation

• Other thesis components

• Related work, conclusion
Personal Names

Each personal group includes a distributed personal namespace.
Personal Names

...are **short, local** to personal group

→ “laptop”, *not* “laptop.bob345.his-isp.com”
Why Local?

Global names:
- Perfect when global usability is the point
- Expensive, cumbersome in personal context

```
amazon.com
```

```
bob.com?
```

Personal names:
- *Not* globally unique, *thus* short, convenient
- *...but* still usable for global connectivity!
Personal Names

...persistently represent the same target regardless of location
How to Build Personal Groups?

Convenience goal precludes:
- assigning or entering IP addresses, MAC addresses, ...
- generating or distributing crypto keys, certificates

Name Bootstrap Problem:
- How to securely indicate device to be named, *without* referring to low-level identifiers?
Building Groups via Introduction

Common case: **local**, on home/office LAN

Also supported: **remote**, via global names

“bobs-pc.workplace.com”
Building Groups via Introduction

use

Device Mobility
to build a
Global Naming Federation
from
Local Pairwise Introductions

“bobs-pc.workplace.com”
UIA Introduction Procedure

2-step process:

1. Identify other device locally [Bonjour]
2. Avoid MITM attacks [Dohrmann/Ellison]
UIA Introduction Security

Refines prior introduction protocols
- Online protocol: resist attacks with fewer bits
- Multiple-choice: ensures user participation

But many other schemes possible! [MyNet]
Remote Access

Names usable from any device in group for **local** or **remote access**
Remote Access

Names usable from any device in group for **local** or **remote access**
Security

All communication **privacy-protected** as in virtual private network (VPN)

- "Camera"
- "Work-PC"
- Internet
- "Laptop"
- "Home-PC"
Social Networking

Personal group provides **user identity**

Bob's Personal Group

Alice's Personal Group
Social Networking

Personal group provides **user identity**

“Hi Alice, I'm Bob!”

“Hi Bob, I'm Alice!”

Bob's Personal Group

Alice's Personal Group

(personal user names)
Social Networking

Personal user names also **persist**

Bob's Personal Group

“Alice”

Alice's Personal Group

“Bob”

(personal user names)
Social Networking

all devices in group represent same user

“Alice, look at this photo!”

“OK, it's from Bob”

Bob's Personal Group

“Alice”

Alicle's Personal Group

(personal user names)

“Bob”
Using Personal Groups/Names

Browse groups, control access

Enter user-relative domain names
Implementing Personal Groups

...while maintaining consistency and availability in a fully decentralized design
Key Technical Challenges

- Device Location Independence
- Network Partition Tolerance
- State Synchronization, Consistency
- Distributed Ownership, Revocation
Challenge: Location Independence

How to identify personal devices as they move, change IP addresses?
Solution: Endpoint Identifiers

Each device has **endpoint identifier** (EID)

- Hash of device's public key [SFS]
- Self-configured, stable, location-independent [HIP]

![Diagram showing EID for Camera and Laptop]

- **Camera**
 - Public Key: 56b19c28f35...
 - Secure Hash
 - EID: 123

- **Laptop**
 - Public Key: 8b934a68cd5f...
 - Secure Hash
 - EID: 456
Challenge: Partition Tolerance

Names must keep working off-Internet
Solution: State Replication

- Each device keeps **change log**
- Grouped devices **replicate** each others' state
- Log entries are **self-certifying, fork-consistent**
Implementing Names and Groups

Device keeps a series of change records

- Start with default name

Camera: EID 123

“Coolpix” \rightarrow EID 123

Laptop: EID 456

“Thinkpad” \rightarrow EID 456
Implementing Names and Groups

Device keeps a *series* of change records

- Start with default name
- To rename: cancel old, write new name record
Implementing Names and Groups

Device keeps a *series* of change records

- Start with default name
- To rename: cancel old, write new name record
- To merge:
 - Write merge records
Implementing Names and Groups

Device keeps a series of change records

- Start with default name
- To rename: cancel old, write new name record
- To merge:
 - Write merge records
 - Gossip series contents
Serverless Name Resolution

- Use replicated state – no communication
- Resolution starts in device's own group
- Resolve components right-to-left

Alice's Group
- iPod
- PowerBook
- Bob

Bob's Group
- Laptop
- Camera
- Home-PC
- Work-PC
- Alice
- Charlie

Charlie's Group
- PC
- Phone
- Bob
Challenge: Consistency

All devices in group must automatically learn name & membership changes.
Solution: Change Record Gossip

- Devices gossip whenever possible with
 - Other devices in personal group
 - Devices in friends' groups (to limited social distance)
Name Conflicts

What if user groups two devices w/ same name?

⇒ merge succeeds, but creates conflict (can't use name)

Resolve by renaming (on either device)
Name Conflicts

What if user groups two devices w/ same name?

⇒ merge succeeds, but creates conflict (can't use name)

Resolve by renaming (on either device)
Challenge: Ownership, Revocation

• Key problem:
 - **Access control** depends on **membership**, **membership changes** depend on **access**
 - Devices can't tell **true owner** from **thief**
 - Maintain device/group **availability** even under **lack of consensus**
Solution: Group Versions, Successorship

On revocation:
- create new group version
- write successor record in old version

One “head” → OK
Solution: Group Versions, Successorship

On revocation:

- create new group **version**
- write **successor record** in old version

One “head” → **OK**

Multiple “heads” → **ownership conflict**

Resolve conflicts by:
Solution: Group Versions, Successorship

On revocation:

- create new group **version**
- write **successor record** in old version

One “head” → OK

Multiple “heads” → **ownership conflict**

Resolve conflicts by:
- merging heads
Solution:
Group Versions, Successorship

On revocation:

- create new group **version**
- write **successor record** in old version

One “head” → **OK**

Multiple “heads” → **ownership conflict**

Resolve conflicts by:

- merging heads
- re-introducing friends
Implementation Status

“Version 1” prototype:
Runs on Linux, Mac OS X, Nokia Internet Tablet

UIA Control/Group Browser
UIA-Aware Application
Legacy Application
UIA Name Daemon
DNS Proxy
UIA Overlay Router
tun Wrapper
Operating System Kernel
Implementation Status

“Version 2” prototype under development
- More robust ownership/revocation algorithm
- Scalable routing protocol (compact routing)
- Structured stream transport (SST) integration
- Fewer dependencies, easier to install
- ...
Evaluation
[Video]
Implementation Observations

Proof-of-concept prototype
– Works, many rough edges...

But demonstrates the architecture
– Logs not too big: ~40K in example
 • Small name records, infrequent changes
– Router tables, overhead not too large
 • Only track “social neighbors”, not whole world
Routing
(brief summary)
Routing to Personal Devices

Application

Personal Name ("laptop")

UIA Naming

Endpoint Identifier (EID)

UIA Routing

IP Address Domain 1

UIA Routing

IP Address Domain 2

Application

UIA Routing
Routing Requirements

• Challenges:
 – Avoid management by users
 – Handle mobility, network partitions
 – Minimize overhead

• Opportunities:
 – Use global Internet when available
 – Use social network
Opportunistic routing via social networks

Gossip waypoint information

Simple, works when communication is between:
- User’s devices
- Immediate friends

Location query: where is “ipod.bob”?

“I'm here!”

“Persistent Personal Names for Globally Connected Mobile Devices”, OSDI 2006
Scalable compact routing

Provable stretch, small routing tables
[TZ 2001, etc.]

Extend TZ to:

- be a distributed protocol
- limit path congestion
- provide fault tolerance
Transport

(brief summary)
Problem

TCP designed for **serial** operation

Modern interactive apps are **parallel**
Structured Stream Transport

Supports *efficient, short-lived streams*

- Stream "**fork**" operation
- No handshake, quick shutdown
- Subsumes *datagrams*
Benefits of SST

Ex. HTTP over SST: *more responsive*
 - No unnecessary request serialization
 - *Fork* provides out-of-band communication

* Dynamically prioritize requests

(Demo)
Related Work

Dynamic DNS, Mobile IP, IPSEC VPNs
Decentralized security: SDSI/SPKI
Host identities: SFS, HIP, JXTA, i3
Naming/routing: DDNS, TRIAD, i3, CoDoNS
Optimistic replication: Ficus, Coda, Ivy
Mobile data: Rumor, P-Grid, Roma, Footloose
Social networking: Turtle, Sprout, F2F, Tribler
Conclusion

UIA delivers **new network abstractions** for **tomorrow's personal devices**

- **Personal Groups, Personal Names** [OSDI '06]
- **Structured Streams** [SIGCOMM '07]
- ..and more...

http://pdos.csail.mit.edu/uia/
Acknowledgments

UIA Team
Jacob Strauss, Chris Lesniewski-Laas, Sean Rhea

Thesis Committee
Frans Kaashoek, Robert Morris, Hari Balakrishnan

Naming, Routing [OSDI ’06]
Franklin Reynolds, MyNet Team – Nokia Research
Martín Abadi, Tom Rodeheffer – Microsoft Research

Transport [SIGCOMM ’07]
Craig Partridge, Chip Elliott, Lars Eggert

NAT Traversal [USENIX ’05]
Pyda Srisuresh, Dan Kegel, Henrik Nordstrom,
Christian Huitema, Justin Uberti, Mema Roussopoulos

Funding: NSF (Project IRIS, UIA), MIT/Quanta T-Party